Serat optik merupakan saluran transmisi atau
sejenis kabel yang terbuat dari kaca atau plastik yang sangat halus dan lebih
kecil dari sehelai rambut, dan dapat digunakan untuk mentransmisikan sinyal
cahaya dari suatu tempat ke tempat lain. Sumber cahaya yang digunakan biasanya
adalah
laser atau LED. Kabel ini berdiameter lebih kurang 120 mikrometer.
Cahaya yang
ada di dalam serat optik tidak keluar karena indeks bias dari kaca lebih besar
daripada indeks bias dari udara, karena laser mempunyai spektrum yang sangat
sempit. Kecepatan transmisi serat optik sangat tinggi sehingga sangat bagus
digunakan sebagai saluran komunikasi.
Perkembangan
teknologi serat optik saat ini, telah dapat menghasilkan pelemahan
(attenuation) kurang dari 20 decibels (dB)/km. Dengan lebar jalur (bandwidth)
yang besar sehingga kemampuan dalam mentransmisikan data menjadi lebih banyak
dan cepat dibandingan dengan penggunaan kabel konvensional.
Dengan demikian
serat optik sangat cocok digunakan terutama dalam aplikasi sistem
telekomunikasi. Pada prinsipnya serat optik memantulkan dan membiaskan sejumlah
cahaya yang merambat didalamnya.
Efisiensi
dari serat optik ditentukan oleh kemurnian dari bahan penyusun gelas/kaca.
Semakin murni bahan gelas, semakin sedikit cahaya yang diserap oleh serat
optik.
Kabel serat optik |
Sejarah
Serat Optik |
Penggunaan
cahaya sebagai pembawa informasi sebenarnya sudah banyak digunakan sejak zaman
dahulu, baru sekitar tahun 1930-an para ilmuwan Jerman mengawali eksperimen
untuk mentransmisikan cahaya melalui bahan yang bernama serat optik. Percobaan
ini juga masih tergolong cukup primitif karena hasil yang dicapai tidak bisa
langsung dimanfaatkan, namun harus melalui perkembangan dan penyempurnaan lebih
lanjut lagi. Perkembangan selanjutnya adalah ketika para ilmuawan Inggris pada
tahun 1958 mengusulkan prototipe serat optik yang sampai sekarang dipakai yaitu
yang terdiri atas gelas inti yang dibungkus oleh gelas lainnya. Sekitar awal
tahun 1960-an perubahan fantastis terjadi di Asia yaitu ketika para ilmuwan
Jepang berhasil membuat jenis serat optik yang mampu mentransmisikan gambar.
Di lain
pihak para ilmuwan selain mencoba untuk memandu cahaya melewati gelas (serat
optik) namun juga mencoba untuk ”menjinakkan” cahaya. Kerja keras itupun
berhasil ketika sekitar 1959 laser ditemukan. Laser beroperasi pada daerah
frekuensi tampak sekitar 1014 Hertz-15 Hertz atau ratusan ribu kali frekuensi
gelombang mikro.
Pada awalnya
peralatan penghasil sinar laser masih serba besar dan merepotkan. Selain tidak
efisien, ia baru dapat berfungsi pada suhu sangat rendah. Laser juga belum
terpancar lurus. Pada kondisi cahaya sangat cerah pun, pancarannya gampang
meliuk-liuk mengikuti kepadatan atmosfer. Waktu itu, sebuah pancaran laser
dalam jarak 1 km, bisa tiba di tujuan akhir pada banyak titik dengan simpangan
jarak hingga hitungan meter.
Sekitar
tahun 60-an ditemukan serat optik yang kemurniannya sangat tinggi, kurang dari
1 bagian dalam sejuta. Dalam bahasa sehari-hari artinya serat yang sangat
bening dan tidak menghantar listrik ini sedemikian murninya, sehingga konon,
seandainya air laut itu semurni serat optik, dengan pencahayaan cukup mata
normal akan dapat menonton lalu-lalangnya penghuni dasar Samudera Pasifik.
Seperti
halnya laser, serat optik pun harus melalui tahap-tahap pengembangan awal.
Sebagaimana medium transmisi cahaya, ia sangat tidak efisien. Hingga tahun 1968
atau berselang dua tahun setelah serat optik pertama kali diramalkan akan
menjadi pemandu cahaya, tingkat atenuasi (kehilangan)-nya masih 20 dB/km.
Melalui pengembangan dalam teknologi material, serat optik mengalami pemurnian,
dehidran dan lain-lain. Secara perlahan tapi pasti atenuasinya mencapai tingkat
di bawah 1 dB/km.
Kronologi Perkembangan Serat Optik
- 1917 Albert Einstein memperkenalkan teori pancaran terstimulasi dimana jika ada atom dalam tingkatan energi tinggi
- 1954 Charles Townes, James Gordon, dan Herbert Zeiger dari Universitas Columbia USA, mengembangkan maser yaitu penguat gelombang mikro dengan pancaran terstimulasi, dimana molekul dari gasamonia memperkuat dan menghasilkan gelombang elektromagnetik. Pekerjaan ini menghabiskan waktu tiga tahun sejak ide Townes pada tahun 1951 untuk mengambil manfaat dari osilasi frekuensi tinggi molekular untuk membangkitkan gelombang dengan panjang gelombang pendek pada gelombang radio.
- 1958 Charles Townes dan ahli fisika Arthur Schawlow mempublikasikan penelitiannya yang menunjukan bahwa maser dapat dibuat untuk dioperasikan pada daerah infra merah dan spektrum tampak, dan menjelaskan tentang konsep laser.
- 1960 Laboratorium Riset Bell dan Ali Javan serta koleganya William Bennett, Jr., dan Donald Herriott menemukan sebuah pengoperasian secara berkesinambungan dari laser helium-neon.
- 1960 Theodore Maiman, seorang fisikawan dan insinyur elektro dari Hughes Research Laboratories, menemukan sumber laser dengan menggunakan sebuah kristal batu rubi sintesis sebagai medium.
- 1961 Peneliti industri Elias Snitzer dan Will Hicks mendemontrasikan sinar laser yang diarahkan melalui serat gelas yang tipis(serat optik). Inti serat gelas tersebut cukup kecil yang membuat cahaya hanya dapat melewati satu bagian saja tetapi banyak ilmuwan menyatakan bahwa serat tidak cocok untuk komunikasi karena rugi rugi cahaya yang terjadi karena melewati jarak yang sangat jauh.
- 1961 Penggunaan laser yang dihasilkan dari batu Rubi untuk keperluan medis di Charles Campbell of the Institute of Ophthalmology at Columbia-Presbyterian Medical Center dan Charles Koester of the American Optical Corporation menggunakan prototipe ruby laser photocoagulator untuk menghancurkan tumor pada retina pasien.
- 1962 Tiga group riset terkenal yaitu General Electric, IBM, dan MIT’s Lincoln Laboratory secara simultan mengembangkan gallium arsenide laser yang mengkonversikan energi listrk secara langsung ke dalam cahaya infra merah dan perkembangan selanjutnya digunakan untuk pengembangan CD dan DVD player serta penggunaan pencetak laser.
- 1963 Ahli fisika Herbert Kroemer mengajukan ide yaitu heterostructures, kombinasi dari lebih dari satu semikonduktor dalam layer-layer untuk mengurangi kebutuhan energi untuk laser dan membantu untuk dapat bekerja lebih efisien. Heterostructures ini nantinya akan digunakan pada telepon seluler dan peralatan elektronik lainnya.
- 1966 Charles Kao dan George Hockham yang melakukan penelitian di Standard Telecommunications Laboratories Inggris mempublikasikan penelitiannya tentang kemampuan serat optik dalam mentransmisikan sinar laser yang sangat sedikit rugi-ruginya dengan menggunakan serat kaca yang sangat murni. Dari penemuan ini, kemudian para peneliti lebih fokus pada bagaimana cara memurnikan bahan serat kaca tersebut.
- 1970 Ilmuwan Corning Glass Works yaitu Donald Keck, Peter Schultz, dan Robert Maurer melaporkan penemuan serat optik yang memenuhi standar yang telah ditentukan oleh Kao dan Hockham. Gelas yang paling murni yang dibuat terdiri atas gabungan silika dalam tahap uap dan mampu mengurangi rugi-rugi cahaya kurang dari 20 decibels per kilometer, yang selanjutnya pada 1972, tim ini menemukan gelas dengan rugi-rugi cahaya hanya 4 decibels per kilometer. Dan juga pada tahun 1970, Morton Panish dan Izuo Hayashi dari Bell Laboratories dengan tim Ioffe Physical Institute dari Leningrad, mendemontrasikan laser semikonduktor yang dapat dioperasikan pada temperatur ruang. Kedua penemuan tersebut merupakan terobosan dalam komersialisasi penggunaan fiber optik.
- 1973 John MacChesney dan Paul O. Connor pada Bell Laboratories mengembangkan proses pengendapan uap kimia ke bentuk ultratransparent glass yang kemudian menghasilkan serat optik yang mempunyai rugi-rugi sangat kecil dan diproduksi secara masal.
- 1975 Insinyur pada Laser Diode Labs mengembangkan Laser Semikonduktor, laser komersial pertama yang dapat dioperasikan pada suhu kamar.
- 1977 Perusahaan telepon memulai penggunaan serat optik yang membawa lalu lintas telepon. GTE membuka jalur antara Long Beach dan Artesia, California, yang menggunakan transmisi LED. Bell Labs mendirikan sambungan yang sama pada sistem telepon di Chicago dengan jarak 1,5 mil di bawah tanah yang menghubungkan 2 switching station.
- 1980 Industri serat optik benar-benar sudah berkibar, sambungan serat optik telah ada di kota kota besar di Amerika, AT&T mengumumkan akan menginstal jaringan serat optik yang menghubungkan kota kota antara Boston dan Washington D.C., kemudian dua tahun kemudian MCI mengumumkan untuk melakukan hal yang sama. Raksasa-raksasa elektronik macam ITT atau STL mulai memainkan peranan dalam mendalami riset-riset serat optik.
- 1987 David Payne dari Universitas Southampton memperkenalkan optical amplifiers yang dikotori (dopped) oleh elemen erbium, yang mampu menaikan sinyal cahaya tanpa harus mengkonversikan terlebih dahulu ke dalam energi listrik.
- 1988 Kabel Translantic yang pertama menggunakan serat kaca yang sangat transparan, dan hanya memerlukan repeater untuk setiap 40 mil.
- 1991 Emmanuel Desurvire dari Bell Laboratories serta David Payne dan P. J. Mears dari Universitas Southampton mendemontrasikan optical amplifiers yang terintegrasi dengan kabel serat optik tersebut. Dengan keuntungannya adalah dapat membawa informasi 100 kali lebih cepat dari pada kabel dengan penguat elektronik (electronic amplifier).
- 1996 TPC-5 merupakan jenis kabel serat optik yang pertama menggunakan penguat optik. Kabel ini melewati samudera pasifik mulai dari San Luis Obispo, California, ke Guam, Hawaii, dan Miyazaki, Jepang, dan kembali ke Oregon coast dan mampu untuk menangani 320,000 panggilan telepon.
- 1997 Serat optik menghubungkan seluruh dunia, Link Around the Globe (FLAG) menjadi jaringan kabel terpanjang di seluruh dunia yang menyediakan infrastruktur untuk generasi internet terbaru.
Sistem Komunikasi Serat Optik (SKSO)
Berdasarkan
penggunaannya maka SKSO dibagi atas beberapa generasi yaitu :
Generasi pertama (mulai 1975)
Sistem masih
sederhana dan menjadi dasar bagi sistem generasi berikutnya, terdiri
dari : alat encoding : mengubah input (misal suara) menjadi sinyal
listrik transmitter : mengubah sinyal listrik menjadi sinyal gelombang,
berupa LED dengan panjang gelombang 0,87 mm. serat silika : sebagai
penghantar sinyal gelombang repeater : sebagai penguat gelombang yang
melemah di perjalanan receiver : mengubah sinyal gelombang menjadi sinyal
listrik, berupa fotodetektor alat decoding : mengubah sinyal listrik
menjadi output (misal suara) Repeater bekerja melalui beberapa tahap, mula-mula
ia mengubah sinyal gelombang yang sudah melemah menjadi sinyal listrik,
kemudian diperkuat dan diubah kembali menjadi sinyal gelombang. Generasi
pertama ini pada tahun 1978 dapat mencapai kapasitas transmisi sebesar 10
Gb.km/s.
Generasi kedua (mulai 1981)
Untuk
mengurangi efek dispersi, ukuran teras serat diperkecil agar menjadi tipe mode
tunggal. Indeks bias kulit dibuat sedekat-dekatnya dengan indeks bias teras.
Dengan sendirinya transmitter juga diganti dengan diode laser, panjang
gelombang yang dipancarkannya 1,3 mm. Dengan modifikasi ini generasi kedua
mampu mencapai kapasitas transmisi 100 Gb.km/s, 10 kali lipat lebih besar
daripada generasi pertama.
Generasi ketiga (mulai 1982)
Terjadi
penyempurnaan pembuatan serat silika dan pembuatan chip diode laser berpanjang
gelombang 1,55 mm. Kemurnian bahan silika ditingkatkan sehingga transparansinya
dapat dibuat untuk panjang gelombang sekitar 1,2 mm sampai 1,6 mm.
Penyempurnaan ini meningkatkan kapasitas transmisi menjadi beberapa ratus
Gb.km/s.
Generasi keempat (mulai 1984)
Dimulainya
riset dan pengembangan sistem koheren, modulasinya yang dipakai bukan modulasi
intensitas melainkan modulasi frekuensi, sehingga sinyal yang sudah lemah
intensitasnya masih dapat dideteksi. Maka jarak yang dapat ditempuh, juga
kapasitas transmisinya, ikut membesar. Pada tahun 1984 kapasitasnya sudah dapat
menyamai kapasitas sistem deteksi langsung. Sayang, generasi ini terhambat
perkembangannya karena teknologi piranti sumber dan deteksi modulasi frekuensi
masih jauh tertinggal. Tetapi tidak dapat disangkal bahwa sistem koheren ini
punya potensi untuk maju pesat pada masa-masa yang akan datang.
Generasi kelima (mulai 1989)
Pada
generasi ini dikembangkan suatu penguat optik yang menggantikan fungsi repeater
pada generasi-generasi sebelumnya. Sebuah penguat optik terdiri dari sebuah
diode laser InGaAsP (panjang gelombang 1,48 mm) dan sejumlah serat optik dengan
doping erbium (Er) di terasnya. Pada saat serat ini disinari diode lasernya,
atom-atom erbium di dalamnya akan tereksitasi dan membuat inversi populasi*,
sehingga bila ada sinyal lemah masuk penguat dan lewat di dalam serat,
atom-atom itu akan serentak mengadakan deeksitasi yang disebut emisi terangsang
(stimulated emission) Einstein. Akibatnya sinyal yang sudah melemah akan
diperkuat kembali oleh emisi ini dan diteruskan keluar penguat. Keunggulan
penguat optik ini terhadap repeater adalah tidak terjadinya gangguan terhadap
perjalanan sinyal gelombang, sinyal gelombang tidak perlu diubah jadi listrik
dulu dan seterusnya seperti yang terjadi pada repeater. Dengan adanya penguat
optik ini kapasitas transmisi melonjak hebat sekali. Pada awal pengembangannya
hanya dicapai 400 Gb.km/s, tetapi setahun kemudian kapasitas transmisi sudah
menembus harga 50 ribu Gb.km/s.
Generasi keenam
Pada tahun
1988 Linn F. Mollenauer memelopori sistem komunikasi soliton. Soliton adalah
pulsa gelombang yang terdiri dari banyak komponen panjang gelombang.
Komponen-komponennya memiliki panjang gelombang yang berbeda hanya sedikit, dan
juga bervariasi dalam intensitasnya. Panjang soliton hanya 10-12 detik dan
dapat dibagi menjadi beberapa komponen yang saling berdekatan, sehingga
sinyal-sinyal yang berupa soliton merupakan informasi yang terdiri dari
beberapa saluran sekaligus (wavelength division multiplexing). Eksperimen
menunjukkan bahwa soliton minimal dapat membawa 5 saluran yang masing-masing
membawa informasi dengan laju 5 Gb/s. Cacah saluran dapat dibuat menjadi dua
kali lipat lebih banyak jika dibunakan multiplexing polarisasi, karena setiap
saluran memiliki dua polarisasi yang berbeda. Kapasitas transmisi yang telah
diuji mencapai 35 ribu Gb.km/s.
Cara kerja
sistem soliton ini adalah efek Kerr, yaitu sinar-sinar yang panjang
gelombangnya sama akan merambat dengan laju yang berbeda di dalam suatu bahan
jika intensitasnya melebihi suatu harga batas. Efek ini kemudian digunakan
untuk menetralisir efek dispersi, sehingga soliton tidak akan melebar pada
waktu sampai di receiver. Hal ini sangat menguntungkan karena tingkat kesalahan
yang ditimbulkannya amat kecil bahkan dapat diabaikan. Tampak bahwa
penggabungan ciri beberapa generasi teknologi serat optik akan mampu
menghasilkan suatu sistem komunikasi yang mendekati ideal, yaitu yang memiliki
kapasitas transmisi yang sebesar-besarnya dengan tingkat kesalahan yang
sekecil-kecilnya yang jelas, dunia komunikasi abad 21 mendatang tidak dapat
dihindari lagi akan dirajai oleh teknologi serat optik.
Kabel Serat Optik
Bagian-bagian serat optik jenis single mode |
Secara garis
besar kabel serat optik terdiri dari 2 bagian utama, yaitu cladding dan core
[4]. Cladding adalah selubung dari inti (core). Cladding mempunyai indek bias
lebih rendah dari pada core akan memantulkan kembali cahaya yang mengarah
keluar dari core kembali kedalam core lagi.
Bagian-bagian serat optik jenis single mode
Bagian-bagian serat optik jenis single mode
Dalam
aplikasinya serat optik biasanya diselubungi oleh lapisan resin yang disebut
dengan jacket, biasanya berbahan plastik. Lapisan ini dapat menambah kekuatan
untuk kabel serat optik, walaupun tidak memberikan peningkatan terhadap sifat
gelombang pandu optik pada kabel tersebut. Namun lapisan resin ini dapat
menyerap cahaya dan mencegah kemungkinan terjadinya kebocoran cahaya yang
keluar dari selubung inti. Serta hal ini dapat juga mengurangi cakap silang
(cross talk) yang mungkin terjadi.
Pembagian
serat optik dapat dilihat dari 2 macam perbedaan :
1.
Berdasarkan mode yang dirambatkan:
* Single
mode : serat optik dengan inti (core) yang sangat kecil (biasanya sekitar 8,3
mikron), diameter intinya sangat sempit mendekati panjang gelombang sehingga
cahaya yang masuk ke dalamnya tidak terpantul-pantul ke dinding selongsong
(cladding). Bahagian inti serat optik single-mode terbuat dari bahan kaca
silika (SiO2) dengan sejumlah kecil kaca Germania (GeO2) untuk meningkatkan
indeks biasnya.
Untuk mendapatkan performa yang baik pada kabel ini, biasanya
untuk ukuran selongsongnya adalah sekitar 15 kali dari ukuran inti (sekitar 125
mikron). Kabel untuk jenis ini paling mahal, tetapi memiliki pelemahan (kurang
dari 0.35dB per kilometer), sehingga memungkin kecepatan yang sangat tinggi
dari jarak yang sangat jauh. Standar terbaru untuk kabel ini adalah ITU-T
G.652D, dan G.657.
* Multi mode : serat optik dengan diameter core yang agak besar yang membuat laser di dalamnya akan terpantul-pantul di dinding cladding yang dapat menyebabkan berkurangnya bandwidth dari serat optik jenis ini.
2.
Berdasarkan indeks bias core:
* Step
indeks : pada serat optik step indeks, core memiliki indeks bias yang homogen.
* Graded indeks : indeks bias core semakin mendekat ke arah cladding semakin kecil. Jadi pada graded indeks, pusat core memiliki nilai indeks bias yang paling besar. Serat graded indeks memungkinkan untuk membawa bandwidth yang lebih besar, karena pelebaran pulsa yang terjadi dapat diminimalkan.
* Graded indeks : indeks bias core semakin mendekat ke arah cladding semakin kecil. Jadi pada graded indeks, pusat core memiliki nilai indeks bias yang paling besar. Serat graded indeks memungkinkan untuk membawa bandwidth yang lebih besar, karena pelebaran pulsa yang terjadi dapat diminimalkan.
Pelemahan
(Attenuation) cahaya sangat penting diketahui terutama dalam merancang sistem
telekomunikasi serat optik itu sendiri. Pelemahan cahaya dalam serat optik
adalah adanya penurunan rata-rata daya optik pada kabel serat optik, biasanya
diekspresikan dalam decibel (dB) tanpa tanda negatif.
Berikut ini beberapa hal
yang menyumbang kepada pelemahan cahaya pada serat optik[7]:
1.
Penyerapan (Absorption)
Kehilangan cahaya yang disebabkan adanya kotoran dalam serat optik.
2. Penyebaran (Scattering)
3. Kehilangan radiasi (radiative losses)
Kehilangan cahaya yang disebabkan adanya kotoran dalam serat optik.
2. Penyebaran (Scattering)
3. Kehilangan radiasi (radiative losses)
Reliabilitas
dari serat optik dapat ditentukan dengan satuan BER (Bit error rate). Salah
satu ujung serat optik diberi masukan data tertentu dan ujung yang lain
mengolah data itu. Dengan intensitas laser yang rendah dan dengan panjang serat
mencapai beberapa km, maka akan menghasilkan kesalahan. Jumlah kesalahan
persatuan waktu tersebut dinamakan BER. Dengan diketahuinya BER maka, Jumlah
kesalahan pada serat optik yang sama dengan panjang yang berbeda dapat
diperkirakan besarnya.
Kode warna
pada kabel serat optik
Selubung
luar
Dalam
standarisasinya kode warna dari selubung luar (jacket) kabel serat
optik jenis Patch Cord adalah sebagai berikut:
Warna
selubung luar/jacket
|
Artinya
|
Kuning
|
serat optik single-mode
|
Oren
|
serat optik multi-mode
|
Aqua
|
Optimal
laser 10 giga 50/125 mikrometer serat optik multi-mode
|
Abu-Abu
|
Kode warna
serat optik multi-mode, yang tidak digunakan lagi
|
Biru
|
Kadang
masih digunakan dalam model perancangan
|
Konektor
Pada kabel
serat optik, sambungan ujung terminal atau disebut juga konektor, biasanya
memiliki tipe standar seperti berikut:
1. FC (Fiber
Connector): digunakan untuk kabel single mode dengan akurasi yang sangat tinggi
dalam menghubungkan kabel dengan transmitter maupun receiver. Konektor ini
menggunakan sistem drat ulir dengan posisi yang dapat diatur, sehingga ketika
dipasangkan ke perangkat lain, akurasinya tidak akan mudah berubah.
2. SC (Subsciber Connector): digunakan untuk kabel single mode, dengan sistem dicabut-pasang. Konektor ini tidak terlalu mahal, simpel, dan dapat diatur secara manual serta akurasinya baik bila dipasangkan ke perangkat lain.
3. ST (Straight Tip): bentuknya seperti bayonet berkunci hampir mirip dengan konektor BNC. Sangat umum digunakan baik untuk kabel multi mode maupun single mode. Sangat mudah digunakan baik dipasang maupun dicabut.
4. Biconic: Salah satu konektor yang kali pertama muncul dalam komunikasi fiber optik. Saat ini sangat jarang digunakan.
5. D4: konektor ini hampir mirip dengan FC hanya berbeda ukurannya saja. Perbedaannya sekitar 2 mm pada bagian ferrule-nya.
6. SMA: konektor ini merupakan pendahulu dari konektor ST yang sama-sama menggunakan penutup dan pelindung. Namun seiring dengan berkembangnya ST konektor, maka konektor ini sudah tidak berkembang lagi penggunaannya.
7. E200
2. SC (Subsciber Connector): digunakan untuk kabel single mode, dengan sistem dicabut-pasang. Konektor ini tidak terlalu mahal, simpel, dan dapat diatur secara manual serta akurasinya baik bila dipasangkan ke perangkat lain.
3. ST (Straight Tip): bentuknya seperti bayonet berkunci hampir mirip dengan konektor BNC. Sangat umum digunakan baik untuk kabel multi mode maupun single mode. Sangat mudah digunakan baik dipasang maupun dicabut.
4. Biconic: Salah satu konektor yang kali pertama muncul dalam komunikasi fiber optik. Saat ini sangat jarang digunakan.
5. D4: konektor ini hampir mirip dengan FC hanya berbeda ukurannya saja. Perbedaannya sekitar 2 mm pada bagian ferrule-nya.
6. SMA: konektor ini merupakan pendahulu dari konektor ST yang sama-sama menggunakan penutup dan pelindung. Namun seiring dengan berkembangnya ST konektor, maka konektor ini sudah tidak berkembang lagi penggunaannya.
7. E200
Selanjutnya
jenis-jenis konektor tipe kecil:
1. LC
2. SMU
3. SC-DC
2. SMU
3. SC-DC
Selain itu pada
konektor tersebut biasanya menggunakan warna tertentu dengan maksud sebagai
berikut:
Warna
Konektor
|
Arti
|
Keterangan
|
|
Biru
|
Physical
Contact (PC), 0°
|
yang
paling umum digunkan untuk serat optik single-mode.
|
|
Hijau
|
Angle
Polished (APC), 8°
|
sudah
tidak digunakan lagi untuk serat optik multi-mode
|
|
Hitam
|
Physical
Contact (PC), 0°
|
||
Abu-abu,
|
Krem
|
Physical
Contact (PC), 0°
|
serat optik multi-mode
|
Putih
|
Physical
Contact (PC), 0°
|
||
Merah
|
Penggunaan
khusus.
|
||
http://www.kumpulberita.com